organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mohammed H. Al-Douh,^a Shafida A. Hamid,^a* Hasnah Osman,^a Shea-Lin Ng^b and Hoong-Kun Fun^b*

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^b X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: shafida@usm.my, hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.001 Å R factor = 0.050 wR factor = 0.137 Data-to-parameter ratio = 34.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(2-Benzyloxy-3-methoxyphenyl)-1*H*-benzimidazole

In the title molecule, $C_{21}H_{18}N_2O_2$, all bond lengths and angles are normal. Weak intermolecular $N-H\cdots N$ hydrogen bonds link the molecules into chains along the *c* axis. The crystal packing is further stabilized by van der Waals forces.

Received 31 July 2006 Accepted 15 August 2006

Comment

Benzimidazole and its derivatives are widely used in biological systems (Craigo *et al.*, 1999; Gudmundsson *et al.*, 2000; Trivedi *et al.*, 2006). They are often used in an experimental synthetic search for new drugs (Townsend & Revankav, 1970; Trivedi *et al.*, 2006). Some derivatives of benzimidazole are used as topoisomerase I inhibitors (Kim *et al.*, 1996), and as antitumor (Craigo *et al.*, 1999), antiviral (Gudmundsson *et al.*, 2000) and antibacterial (Khalafi-Nezhad *et al.*, 2005) agents. The title compound, (I), is a new benzimidazole derivative. We present here its crystal structure.

Bond lengths and angles in (I) show normal values (Allen *et al.*, 1987) and are comparable with those reported for the related structures (Beauchamp *et al.*, 1987). The methoxy group at C12 is almost coplanar with the attached ring [C11-C12-O2-C21 = $-3.25 (11)^{\circ}$], while the benzyloxy substituent is twisted away from the attached ring, with a C13-O1-C14-C15 torsion angle of $-135.66 (7)^{\circ}$. Intramolecular N1-H1A···O1 hydrogen bonds (Fig. 1 and Table 1) generate *S*(6) ring motifs (Bernstein *et al.*, 1995).

Weak intermolecular $N-H\cdots N$ hydrogen bonds (Table 1) link the molecules into chains extending along the *c* axis. The crystal packing (Fig. 2) is further stabilized by van der Waals forces.

Experimental

© 2006 International Union of Crystallography All rights reserved A 100 ml three-necked round-bottomed flask was equipped with a nitrogen inlet adapter, rubber septum, glass stopper and magnetic

54869 measured reflections

 $R_{\rm int} = 0.054$

 $\theta_{\rm max} = 37.5^{\circ}$

8446 independent reflections

6691 reflections with $I > 2\sigma(I)$

Figure 1

View of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed line indicates an intramolecular hydrogen bond.

Figure 2

The crystal packing of (I), viewed down the *a* axis. Hydrogen bonds are shown as dashed lines.

stirring bar. The flask was charged with 5 ml of dichloromethane and benzyl-o-vanillin (484.6 mg, 2 mmol) and was cooled in an ice-water bath while a solution of o-phenylenediamine (216.3 mg, 2 mmol) in 5 ml dichloromethane was added dropwise via a syringe over 15 min. After 30 min, 10 mg anhydrous magnesium sulfate was added in one portion. The ice-water bath was removed, and the reaction mixture was stirred at room temperature for 2 h. The resulting mixture was then filtered through a sintered glass funnel with the aid of two 10 ml portions of dichloromethane; the filtrate was concentrated at reduced pressure by rotary evaporation at room temperature, affording a yellowish brown syrup. This material was dissolved in 150 ml of ethanol heated in an 353 K water bath while 270 ml of hot water was added with stirring. The resulting solution was allowed to cool to room temperature and was then cooled in an ice-water bath for 2 h. Filtration provided a light yellow powder of (I). The product was then purified by column chromatography with 30% ethanol in diethyl ether. Single crystals suitable for X-ray diffraction were obtained from ethanol-acetone (99:1 v/v).

Crystal data

C21H18N2O2 Z = 4 $D_x = 1.355 \text{ Mg m}^{-3}$ $M_r = 330.37$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 9.5417 (1) Å $\mu = 0.09 \text{ mm}^{-1}$ b = 18.4590 (3) Å T = 100.0 (1) K c = 11.0653 (2) Å Block, vellow $\beta = 123.814 \ (1)^{\circ}$ $0.61 \times 0.28 \times 0.22 \text{ mm}$ V = 1619.27 (4) Å³

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer (i) scans Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.893, \ T_{\rm max} = 0.981$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0705P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.050$	+ 0.2664P]
$wR(F^2) = 0.137$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
8446 reflections	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
244 parameters	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1A \cdots O1 \\ N1 - H1A \cdots N2^{i} \end{array}$	0.86 0.86	2.14 2.57	2.693 (1) 3.313 (1)	122 145
	. 1 1			

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

H atoms were placed in calculated positions, with C-H = 0.93-0.97 Å and N-H = 0.86 Å. The H atoms were refined as riding and the $U_{\rm iso}$ values were freely refined.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

MHAD and SAH thank the Malaysian Government and Universiti Sains Malaysia for IRPA short term grant (No. 304/ PKIMIA/636108).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Beauchamp, A. L., Montgrain, F. & Wuest, J. D. (1987). Acta Cryst. C43, 1557-1560.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). *APEX2* (Version 1.27), *SAINT* (Version 7.12A) and *SADABS* (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Craigo, W. A., LeSueur, B. W. & Skibo, E. B. (1999). J. Med. Chem. 42, 3324–3333.
- Gudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2464– 2472.
- Khalafi-Nezhad, A., Rad, M. N. S., Mohabatkar, H., Asraria, Z. & Hemmateenejada, B. (2005). *Bioorg. Med. Chem.* **13**, 1931–1938.
- Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & LaVoie, E. J. (1996). J. Med. Chem. 39, 992–998.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Townsend, L. B. & Revankav, G. R. (1970). Chem. Rev. 70, 389-438.
- Trivedi, R., De, S. K. & Gibbs, R. A. (2006). J. Mol. Catal. A, 245, 8-11.